Monday, November 13, 2017

Aristotle: Motion and Time

The continuum

Spacial extension, motion, and time are often thought of as continua—as wholes made up of a series of smaller parts. Aristotle develops a subtle analysis of the nature of such continuous quantities. Two entities are continuous, he says, when there is only a single common boundary between them. On the basis of this definition, he seeks to show that a continuum cannot be composed of indivisible atoms. A line, for example, cannot be composed of points that lack magnitude. Since a point has no parts, it cannot have a boundary distinct from itself; two points, therefore, cannot be either adjacent or continuous. Between any two points on a continuous line there will always be other points on the same line.

Similar reasoning, Aristotle says, applies to time and to motion. Time cannot be composed of indivisible moments, because between any two moments there is always a period of time. Likewise, an atom of motion would in fact have to be an atom of rest. Moments or points that were indivisible would lack magnitude, and zero magnitude, however often repeated, can never add up to any magnitude.

Any magnitude, then, is infinitely divisible. But this means “unendingly divisible,” not “divisible into infinitely many parts.” However often a magnitude has been divided, it can always be divided further. It is infinitely divisible in the sense that there is no end to its divisibility. The continuum does not have an infinite number of parts; indeed, Aristotle regarded the idea of an actually infinite number as incoherent. The infinite, he says, has only a “potential” existence.

Motion

Motion (kinesis) was for Aristotle a broad term, encompassing changes in several different categories. A paradigm of his theory of motion, which appeals to the key notions of actuality and potentiality, is local motion, or movement from place to place. If a body X is to move from point A to point B, it must be able to do so: when it is at A it is only potentially at B. When this potentiality has been realized, then X is at B. But it is then at rest and not in motion. So motion from A to B is not simply the actualization of a potential at A for being at B. Is it then a partial actualization of that potentiality? That will not do either, because a body stationary at the midpoint between A and B might be said to have partially actualized that potentiality. One must say that motion is an actualization of a potentiality that is still being actualized. In the Physics Aristotle accordingly defines motion as “the actuality of what is in potentiality, insofar as it is in potentiality.”

Motion is a continuum: a mere series of positions between A and B is not a motion from A to B. If X is to move from A to B, however, it must pass through any intermediate point between A and B. But passing through a point is not the same as being located at that point. Aristotle argues that whatever is in motion has already been in motion. If X, traveling from A to B, passes through the intermediate point K, it must have already passed through an earlier point J, intermediate between A and K. But however short the distance between A and J, that too is divisible, and so on ad infinitum. At any point at which X is moving, therefore, there will be an earlier point at which it was already moving. It follows that there is no such thing as a first instant of motion.

Time

For Aristotle, extension, motion, and time are three fundamental continua in an intimate and ordered relation to each other. Local motion derives its continuity from the continuity of extension, and time derives its continuity from the continuity of motion. Time, Aristotle says, is the number of motion with respect to before and after. Where there is no motion, there is no time. This does not imply that time is identical with motion: motions are motions of particular things, and different kinds of changes are motions of different kinds, but time is universal and uniform. Motions, again, may be faster or slower; not so time. Indeed, it is by the time they take that the speed of motions is determined. Nonetheless, Aristotle says, “we perceive motion and time together.” One observes how much time has passed by observing the process of some change. In particular, for Aristotle, the days, months, and years are measured by observing the Sun, the Moon, and the stars upon their celestial travels.


The part of a journey that is nearer its starting point comes before the part that is nearer its end. The spatial relation of nearer and farther underpins the relation of before and after in motion, and the relation of before and after in motion underpins the relation of earlier and later in time. Thus, on Aristotle’s view, temporal order is ultimately derived from the spatial ordering of stretches of motion.

No comments:

Post a Comment